The first -betti number and groups acting on trees
نویسندگان
چکیده
We generalise results of Thomas, Allcock, Thom-Petersen, and Kar-Niblo to the first $\ell^2$-Betti number quotients certain groups acting on trees by subgroups with free actions edge sets graphs.
منابع مشابه
Superstable groups acting on trees
We study superstable groups acting on trees. We prove that an action of an ω-stable group on a simplicial tree is trivial. This shows that an HNN-extension or a nontrivial free product with amalgamation is not ωstable. It is also shown that if G is a superstable group acting nontrivially on a Λ-tree, where Λ = Z or Λ = R, and if G is either α-connected and Λ = Z, or if the action is irreducible...
متن کاملON QUASI UNIVERSAL COVERS FOR GROUPS ACTING ON TREES WITH INVERSIONS
Abstract. In this paper we show that if G is a group acting on a tree X with inversions and if (T Y ) is a fundamental domain for the action of G on X, then there exist a group &tildeG and a tree &tildeX induced by (T Y ) such that &tildeG acts on &tildeX with inversions, G is isomorphic to &tilde G, and X is isomorphic to &tildeX. The pair (&tilde G &tildeX) is called the quasi universal cover...
متن کاملLimit groups and groups acting freely on R n-trees.
We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R n-trees. We first prove that Sela's limit groups do have a free action on an R n-tree. We then prove that a finitely generated group having a free action on an R n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic ...
متن کاملLimit groups and groups acting freely on R–trees
We give a simple proof of the finite presentation of Sela’s limit groups by using free actions on Rn–trees. We first prove that Sela’s limit groups do have a free action on an Rn–tree. We then prove that a finitely generated group having a free action on an Rn–tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic gro...
متن کاملLimit groups and groups acting freely on $\bbR^n$-trees
We give a simple proof of the finite presentation of Sela's limit groups by using free actions on R n-trees. We first prove that Sela's limit groups do have a free action on an R n-tree. We then prove that a finitely generated group having a free action on an R n-tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 2021
ISSN: ['1464-3839', '0013-0915']
DOI: https://doi.org/10.1017/s0013091521000663